One-step fabrication of functionalized magnetic adsorbents with large surface area and their adsorption for dye and heavy metal ions.
نویسندگان
چکیده
Functionalized magnetic adsorbents (FMAs) were synthesized by a facile and surfactant-free one-pot solvothermal approach, using iron(III) chloride hexahydrate as the precursor, ethylene glycol as the reducing agent, ammonium acetate, and EDTA-2Na as an electrostatic stabilization agent. The self-assembly process of the functionalized magnetic adsorbents has been investigated and a plausible mechanism is proposed. The resulting functionalized magnetic adsorbents have relatively high specific surface areas (71.6 m(2) g(-1)), excellent magnetic properties and rich functional groups (carboxyl groups, hydroxyl groups and hydrophobic groups). Meanwhile, the resulting FMAs were employed in the adsorption of dyes and heavy metal ions from aqueous solution. Herein, we took two types of typical pollutants, dyes (methylene blue (MB) and malachite green (MG)) and toxic heavy metal ions (Cr(VI) and Pb(II)) as examples of organic and inorganic pollutants in environmental water. The excellent intrinsic properties of the FMAs led to a stronger adsorption ability than a solid Fe3O4 adsorbent for MB, MG, Cr(VI) and Pb(II). Especially, the simultaneous adsorption of the functionalized flower-like magnetic adsorbents for MG and Pb(II) was also determined in a binary system. Finally, it was demonstrated that the resulting flower-like magnetic adsorbents are expected to be a good candidate as an adsorbent for water treatment.
منابع مشابه
A review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions
Carbon nanotubes (CNTs) are a novel material that exhibits good adsorption behavior toward various toxic pollutants in aqueous solution. These adsorbents have a fast adsorption rate and high adsorption efficiency, efficient to remove various pollutants and they are easy to recover and reuse. These features highlight the suitability of CNTs for the treatment of water polluted with heavy metal io...
متن کاملA review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions
Carbon nanotubes (CNTs) are a novel material that exhibits good adsorption behavior toward various toxic pollutants in aqueous solution. These adsorbents have a fast adsorption rate and high adsorption efficiency, efficient to remove various pollutants and they are easy to recover and reuse. These features highlight the suitability of CNTs for the treatment of water polluted with heavy metal io...
متن کاملPotentiality of agricultural adsorbent for the sequestering of metal ions from wastewater
The expensive nature of metal ions detoxification from wastewater have restricted the use of conventional treatment technologies. Cheap, alternative measures have been adopted to eliminate metal contamination, and adsorptions using agricultural adsorbents seem to be the way forward. The use of agricultural adsorbents for cadmium (II), copper (II) and lead (II) ion removal has gained more intere...
متن کاملApplication of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System
Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong p...
متن کاملNew Nano-Adsorbents for the Removal of Chromium (III) and Mercury (II) from Aqueous Solutions
Polyvinyl alcohol/ glycerin- magnetic iron oxide nanoparticles (PVAGLPs) have been synthesized successfully by hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). The adsorbed activities of the polyvinyl alcohol/ glycerin- magnetic iron oxide nano particles (PVAGLPs) were ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 43 30 شماره
صفحات -
تاریخ انتشار 2014